EEL 3712L LOGIC DESIGN I LAB

Practice for Final - Summer, 2019 Instructor: Abdullah Aydeger

1. Design a half adder/subtract Circuit with XOR, AND and Inverter (whichever needed) gates.

Answer:

Symbol	Truth Table			
	B	A	SUM	CARRY
	0	0	0	0
	0	1	1	0
	1	0	1	0
	1	1	0	1

$S U M=A X O R B=A \oplus B$
$C A R R Y=A$ AND $B=A \cdot B$

Half Subtractor with Borrow-out

$$
D=X X O R Y=X \oplus Y \quad B=\text { not }-X \text { AND } Y
$$

Symbol		Truth Table			
	Y	X	DIFFERENCE	BORROW	
	0	0	0	0	
	0	1	1	0	

2. Design a 4-to-1 Multiplexer with gates and invertors.
a. Make the Truth table and the equation, you may use De Morgan' Law convert into universal gates(NAND and NOR) for the diagram
b. Draw the diagram
c. Complete the waveform
d. Design Half-adder using this MUX(es).
$2^{2} \times 1$ Multiplexer Waveform

Answer: $Y=S^{\prime} 1 \cdot S^{\prime} 0 \cdot X_{0}+S^{\prime} 1 \cdot S_{0} \cdot X_{1}+S_{1} \cdot S^{\prime} 0 \cdot X_{2}+S_{1} \cdot S_{0} \cdot X_{3}$
4×1 Multiplexer Truth Table

Inputs						Output	
S_{0}	$\mathrm{~S}_{1}$	X_{0}	X_{1}	X_{2}	X_{3}	Y	
0	0	0	x	x	x	0	
0	0	1	x	x	x	1	
1	0	x	0	x	x	0	
1	0	x	1	x	x	1	
0	1	x	x	0	x	0	
0	1	x	x	1	x	1	
1	1	x	x	x	0	0	
1	1	x	x	x	1	1	

3. 7-Segment Octal Number (from 0 to 7) display driver could display the octal number given by the three inputs I2I1I0 using a 7-Segment LED device as shown in Fig 1. The truth table for this circuit is in Tab. 4, please fill in it and write the Minterms of each segment of LED display for this driver.

Binary-coded Octal to 7-Segment Display Decoder Truth Table

Decoder Input			Decoder Outputs (Octal\#)	Inputs of Common Cathode 7-Segment LED Display						
12	I1	10		a	b	c	d	e	f	g

Write Minterms of:

$$
\begin{array}{ll}
a=\Sigma(0,2,3,5,6,7) & \\
b= & e= \\
c= & f= \\
d= & g=
\end{array}
$$

Answer:

Binary-coded Octal to 7-Segment Display Decoder Truth Table

Decoder Input			Decoder Outputs (Octal\#)	Inputs of Common Cathode 7-Segment LED Display						
I2	I1	I0		a	b	c	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	1	1	0	1	1	0	0	0	0
0	1	0	2	1	1	0	1	1	0	1
0	1	1	3	1	1	1	1	0	0	1
1	0	0	4	0	1	1	0	0	1	1
1	0	1	5	1	0	1	1	0	1	1
1	1	0	6	1	0	1	1	1	1	1
1	1	1	7	1	1	1	0	0	0	0

$$
\begin{array}{ll}
\mathrm{a}=\sum(0,2,3,5,6,7) & \mathrm{e}=\sum(0,2,6) \\
\mathrm{b}=\sum(0,1,2,3,4,7) & \mathrm{f}=\sum(0,4,5,6) \\
\mathrm{c}=\sum(0,1,3,4,5,6,7) & \mathrm{g}=\sum(2,3,4,5,6) \\
\mathrm{d}=\sum(0,2,3,5,6) &
\end{array}
$$

4. Design Active-High Output 2 to 4 Binary Decoder using AND gates. Consider Enable input for your design. Show the truth table. By using this decoder, design 3 to 8 decoder.

Answer:

Enable	Inputs		Outputs			
\mathbf{E}	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{Y}_{\mathbf{3}}$	$\mathbf{Y}_{\mathbf{2}}$	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{0}}$
0	x	x	0	0	0	0
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0

5. (a) Construct truth table of the schematic.
(b) Write the expression (equation) of $Z=f(a, b, c, d)$.
(c) Design and draw same function using 4:16 decoder.

Answer:

Truth table:

a	b	c	d	z
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

$$
\begin{aligned}
& z=a ' b ' c d^{\prime}+a^{\prime} b^{\prime} c d+a a^{\prime} b c^{\prime} d^{\prime}+a^{\prime} b c d^{\prime}+a b^{\prime} c^{\prime} d^{\prime}+a b^{\prime} c^{\prime} d+a b ' c d \text { ' }+a b ' c d \\
& + \text { abc'd'+ abc'd }
\end{aligned}
$$

c.

6. Write the truth table of following function and then design the schematic using MUX(es) and 2 inverter gates.

If $s 0=0$ then $z=f(a, b, c)=a^{\prime} b+b c+b^{\prime} c^{\prime}$
If $\mathrm{s}=1$ then $\mathrm{z}=\mathrm{f}^{\prime}(\mathrm{a}, \mathrm{b}, \mathrm{c})$

Answer:

\mathbf{a}	\mathbf{b}	\mathbf{c}	$\mathbf{f (S = 0)}$	
0	0	0	1	\mathbf{c}^{\prime}
0	0	1	0	
0	1	0	1	1
0	1	1	1	
1	0	0	1	\mathbf{c}^{\prime}
1	0	1	0	
1	1	0	0	\mathbf{c}
1	1	1	1	

